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A matched asymptotic analysis is presented that describes the mechanical response 
of the vestibular semicircular canals to rotation of the head and includes the fluid- 
structure interaction which takes place within the enlarged ampullary region of the 
duct. New theoretical results detail the velocity field in a fluid boundary layer sur- 
rounding the cupula. The governing equations were linearized for small perturbations 
in fluid displacement from the prescribed motion of the head and reduced asymptot- 
ically by exploiting the slender geometry of the duct. The results include the pressure 
drop around the three-dimensional endolymphatic duct and through the transitional 
boundary layers within the ampulla. Results implicitly include the deflected shape of 
the cupular partition and provide an expression for the dynamic boundary condition 
acting on the two surfaces of the cupula. In this sense, the analysis reduces the 
three-dimensional fluid dynamics of the endolymph to a relatively simple boundary 
condition acting on the surfaces of the cupula. For illustrative purposes we present 
specific results modelling the cupula as a simple viscoelastic membrane. New re- 
sults show that the multi-dimensional fluid dynamics within the enlarged ampulla 
has a significant influence on the pointwise deflection of the cupula near the crista. 
The spatially averaged displacement of the cupula is shown to agree with previ- 
ous macromechanical descriptions of endolymph flow and pressure that ignore the 
fluid-structure interaction at the cupula. As an example, the model is applied to the 
geometry of the horizontal semicircular canal of the toadfish, Opsanus tau, and results 
for the deflection of the cupula are compared to individual semicircular canal afferent 
responses previously reported by Boyle & Highstein (1990). The cupular-shear-angle 
gain, defined by the angular slope of the cupula at the crista divided by the angular 
velocity of the head, is relatively constant at frequencies from 0.01 Hz up to 1 Hz. 
Over this same range, the phase of the cupular shear angle aligns with the angular 
velocity of the head. Near 10 Hz, the shear-angle gain increases slightly and the phase 
shows a lead of as much a 30". Results are sensitive to the cupular stiffness and 
viscosity. Comparing results to the afferent responses represented within the VIIIth 
nerve provides additional theoretical evidence that the macromechanical displacement 
of the cupula accounts for the behaviour of only a subset of afferent fibres. 

1. Introduction 
The primary function of the vestibular semicircular canals is to transduce angular 

motion of the head into neural signals that are sent to the brain. Afferent signals orig- 

t Current address : Department of Biomedical Engineering, University of Virginia, Charlottesville, 
VA 22908, USA. 
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FIGURE 1. Schematic showing the semicircular-canal triad in the toadfish. Salient anatomical 
features have been indicated. Notice that each duct contains a long-and-slender region with an 
ampulla at one end while the other end of each duct converges on the enlarged utricle. The anterior 
and posterior canals (AC and PC, respectively) join at the crus commune (CC) before entering 
the utricle. The inset details the ampulla of the horizontal canal (HC) showing the cupula-crista 
system. The sensory epithelium resides on the surface of the crista. The crista is imbedded in 
the cupula partition which spans an entire cross-section of the ampulla and is impermeable to the 
endolymphatic fluid. 

inating from the canals provide vital inputs that are necessary to maintain dynamic 
equilibrium and stabilize the image on the retina via the vestibulo-occular, collic, and 
spinal reflexes. Transduction by the canals is achieved through mechanical activation 
of the innervated sensory hair cells that reside on the surface of an epithelium. In 
the present work, the first step in mechanical transduction is described in terms of 
the unsteady fluid-structure (endolymphxupula) interaction taking place within the 
enlarged ampulla. The analysis includes the multi-dimensional ampullary flow and 
the simpler low-Stokes-number flow in the long-and-slender portion of the duct. A 
matched asymptotic expansion is utilized to couple the fluid mechanics in the long- 
and-slender region of the duct to a boundary layer, or transitional flow, in the vicinity 
of the cupula. The resulting model provides an expression for the transcupular dif- 
ferential pressure which includes the mass and viscous effects of the unsteady flow in 
the long-and-slender region of the duct as well as the additional dynamics introduced 
by the three-dimensional unsteady fluid flow in the ampulla. The analysis is applied 
to the three-dimensional geometry of the toadfish horizontal semicircular canal (see 
figure 1). Results address the extent to which the fluid dynamics may account for 
spatial diversity in mechanical activation of sensory hair cells. 

The fundamental morpho-physiology of the semicircular canals was first described 
in the late 19th century by Crum-Brown (1874), Ewald (1887), and Mach (1875). 
This early work identified the semicircular canals as the source of angular motion 
sensation and provided a qualitative description of the biomechanics responsible for 
transduction. Transduction originates with angular acceleration of the head which in- 
duces endolymphatic pressure and flow within the fluid-filled semicircular canals. This 
flow induces deformation of the cupula and deflections of the imbedded stereocilia 
hair-cell bundles. Deflections of the stereocilia in turn give rise to transduction cur- 
rents through gating of displacement-sensitive ion channels (Hudspeth 1983; Corey 
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& Hudspeth 1979, 1983; Hudspeth & Jacobs 1979). The transduction current mod- 
ulates the receptor potential of hair cells which leads to modulation of the intensity 
of neurotransmitter vesicle binding and release. Excitatory post-synaptic potentials 
induced by the neurotransmitter summate to modulate spike initiation in afferents. 
The response of individual afferent fibres within the VIIIth nerve reflecting this cas- 
cade of events has been measured in numerous species (Goldberg & Fernandez 1971; 
Fernandez & Goldberg 1971; Blanks, Estes & Markham 1975; Landolt & Correia 
1980; Boyle & Highstein 1990; Hartmann & Klinke 1980; Landolt & Correia 1980). 
Given the vast differences in the species studied, ranging from fish to primates, the 
response of the nerve is surprisingly uniform. Common features of the response may 
reflect the morpho-physiological invariance of this phylogenetically old sensory sys- 
tem (Igarashi 1966; Wersall & Bagger-Sjoback 1974; Curthoys & Oman 1987). The 
three-dimensional fluid-filled toroidal geometry, the enlarged ampulla, and the cupular 
partition are perhaps the most striking gross morphological inter-species similarities. 
It is precisely this morphology that is responsible for the macromechanical response of 
the semicircular canals and the resulting activation of hair-cell mechano-transducers, 
and it is this morphology that is the subject of the present fluid-dynamical analysis. 

The first mathematical description of semicircular canal macromechanics is credited 
to Steinhausen (1933) who formulated the classical ‘torsion-pendulum’ model. This 
analogy views the loop of endolymph as providing rotational inertia, the cupula as 
providing restoring stiffness, and the viscosity of the endolymph as providing viscous 
drag. The result is a second-order differential equation for the angular deflection of the 
pendulum (i.e. the deflection of the cupula) that is forced by the angular acceleration of 
the head. Since the hair-cell stereocilia are imbedded in the cupula, the deflection of the 
cupula is typically assumed to be the macromechanical stimulus driving gating of the 
transduction channels. The torsion-pendulum model is essentially a band-pass filter 
relating the displacement of the cupula to the angular velocity of the head. Commonly, 
parameters appearing in the model are related to the geometry and physical properties 
of the endolymph by assuming steady Poiseuille flow in a uniform toroid acting to de- 
flect a piston at the position of the cupula (Groen 1949, 1957; Van Buskirk 1987; Van 
Buskirk & Grant 1973; Van Buskirk, Watts & Liu 1976). Analysis of the fluid dynam- 
ics was extended to include the non-uniform geometry of the canal by Oman, Marcus 
& Curthoys (1987) and Rabbitt & Damianof. (1992) using two different modelling 
techniques but arriving at essentially the same mathematical results. They show that 
the effective mass loading of the endolymph on the cupula is proportional to the aver- 
age of the inverse of the local cross-sectional area of the duct. Similarly, the effective 
viscous loading is proportional to the average of the inverse of the square of the local 
cross-sectional area of the duct. In addition, Van Buskirk et al. (1976) and Rabbitt 
& Damiano (1992) provide expressions for the velocity distribution in the long-and- 
slender part of the duct, valid in regions away from the cupula, that locally determine 
the amplitude and phase of the endolymphatic drag force relative to the flow rate. 

Although the more recent models go well beyond Steinhausen’s original torsion- 
pendulum one, all of the previous models agree that the average macromechanical 
response of the semicircular canal is qualitatively similar to the prediction of the 
classical model (i.e. essentially a two-time constant band-pass filter). The response 
of afferent nerves however shows phase and gain enhancements at high physiological 

Figures 5 and 6 reported by Rabbitt & Damiano (1992) are incorrect owing to an error in the 
original computer implementation. The correct numerical results are provided by Damiano (1993). 
The reader should refer to the Corrigendum at the end of this volume. 
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frequencies over and above the gross displacement of the cupula predicted by these 
mechanical models (Goldberg & Fernandez 1971 ; Fernandez & Goldberg 1971 ; Boyle 
& Highstein 1990). This may be due to processing interposed between the mechanics 
and the neural response (i.e. hair-cell and afferent complexes) and/or it may be due to 
deficiencies in the theoretical mechanical models. Direct measurements of the cupular 
displacement during physiological stimulation have the potential to resolve this ques- 
tion but such data have not been reported and remain an experimental challenge to 
obtain. In order to address this question using a mathematical model it is necessary 
to include the local deflection of the cupula that underlies the mechanical stimuli 
activating sensory hair cells. Results of the present work show that the deflected 
shape of the cupula is highly sensitive to cross-sectional endolymph flow near the 
surface of the cupula - an effect ignored by all previous work. 

In the present work we extend analysis of the fluid mechanics to encompass 
the entire physiological frequency range by including the influence of the multi- 
dimensional endolymph-cupula interaction. Although unsteady effects are relatively 
small in the long-and-slender region of the duct, inertia plays a significant role in the 
enlarged ampullary region and thereby influences the endolymph-cupula interaction. 
The importance of unsteady flow is evidenced by the relatively large ampullary Stokes 
number of approximately 6 at 1 Hz. This corresponds to the middle physiological 
frequency range and continues to increase with increasing frequency. 

The endolymphatic flow field is determined by solving a singular perturbation 
problem describing the fluid dynamics throughout a single semicircular canal. What 
makes the equations singular are derivatives along the length of the duct which are 
asymptotically small everywhere except within the ampulla. To account for this, a 
boundary layer is included in the neighbourhood of the cupula. In this boundary-layer 
region, the flow is complicated by the interaction with the cupula and the enlarged 
cross-sectional area of the canal. We use the analysis of the flow in the long-and- 
slender part of the distorted toroid by Rabbitt & Damiano (1992) to describe the 
'outer-region' of the asymptotic solution. A new analysis is presented to describe the 
flow in the ampullary region. Between the two regions the solutions are asymptotically 
matched (refer to Kevorkian & Cole 1981 and Van Dyke 1975 for a discussion of 
these methods). A principal result of the work is a new expression that compresses 
the entire fluid-dynamical problem into a boundary condition acting on the surfaces 
of the cupula. The result relates the pressure differential acting across the cupula to 
the acceleration of the head and to the motion of the cupula itself. It is shown in $ 3  
that the pressure, Ap*, acting transversely across the cupula is given by 

where 

Ap,'(t') = -p $ x R' ds:, 
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Here, the displacement field of the cupula is given by W *  = w*(r* , t*)  where r* is the 
radial coordinate in the cross-section of the canal and t’ is time. The density, dynamic 
viscosity, and kinematic viscosity of the endolymphatic fluid are respectively given by 
p, p, and v = p/p.  The local cross-sectional area of the canal is given by A’ = A’(s*) 
while R’ = R*(s*) defines the position vector from the axis of rotation to the centre of 
a cross-section at S’ where S* is the curvilinear axial coordinate along the canal of total 
length 1. The unit tangent vector to the (circular) curvilinear path defined by S* is given 
by n while the differential tangent vector to the curvilinear path described by the cen- 
treline of the canal is given by ds:. The region of integration, A; = corresponds 
to the area occupied by the surface of the cupula partition. The angular displacement 
vector of the canal is given by a* and its rotational frequency is given by co. The 
eigenvalues, Pn, are the zeros of the zeroth-order Bessel function of the first kind, Jo. 

This relatively simple result is written in dimensional form (symbols which carry 
an asterisk indicate dimensional variables) and includes the three-dimensional mor- 
phology of the endolymphatic duct, the unsteady fluid dynamics throughout the 
toroid, and the fluid-structure interaction at the cupula. It is intended for use with 
multi-dimensional biomechanical models of the cupula and sensory epithelium. The 
pressure implicitly includes the spatio-temporal displacement of the cupula and is 
valid regardless of the specific cupular model employed. The first term, given by (1.2), 
is the inertial forcing caused by the angular acceleration of the head. The second 
term, given by (1.3), is the effective mass loading of the entire loop of endolymph 
acting on the cupula. Similarly, the third term, given by (1.4), represents the effective 
viscous loading of the entire loop of endolymph in terms of the average velocity of 
the cupula. The fourth term, given by (1.5), accounts for the local mass and viscous 
effects in the neighbourhood of the cupula arising from the multi-dimensional fluid 
dynamics occurring within the ampulla. The first two terms above, given by Ap: 
and Ap;, were first obtained by Oman et al. (1987) using an alternative method. 
The third term, given by Ap;, differs from the model of Oman et al. (1987) owing 
to the appearance of the parameter i which provides the frequency dependence of 
the magnitude and phase of the viscous drag in the long-and-slender portion of the 
duct. The new result of the present work is the fourth term given above by Api. 
The analysis presented herein is concerned solely with the derivation of the cupular 
boundary condition given by (1.1). As an illustrative example, the boundary condi- 
tion is applied to the toadfish horizontal semicircular canal treating the cupula as 
a linear viscoelastic membrane (Rabbitt, Boyle & Highstein 1994, 1995a; Damiano 
1993). 

We begin the analysis with the derivation of the flow in the ‘outer-region’ ($2) 
which is valid far from the cupula. This is asymptotically matched to a ‘boundary 
layer’ ($3) on both sides of the cupula within the ampulla. Analysis of the fluid 
mechanics is followed by a numerical example that illustrates the significance of the 
boundary layer. For this we formulate a simple two-dimensional model of the cupula 
(0 4) and solve the coupled equations numerically ($ 5 ) .  

2. The outer region 
We follow the approach of Rabbitt & Damiano (1992) to describe flow in the long- 

and-slender region of the duct and the utricle. New results match this ‘outer-region’ 
solution to a ‘boundary-layer’ model of the endolymph-cupula interaction within the 
ampulla. We begin with a brief description of the outer expansion that is necessary 
in order to proceed with the boundary-layer analysis in $3. 
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The endolymph is modelled as an incompressible Newtonian fluid governed by the 

an* 1 

at P 
7 + (u' * V*)U* = --V'p' + vv*2u*, 

where u* is the dimensional fluid velocity vector, p* is the dimensional fluid pressure, 
and the parameters p and v are the endolymphatic density and kinematic viscos- 
ity, respectively. Quantities carrying an asterisk refer to dimensional variables while 
all other variables are non-dimensional. In addition to these equations, the diver- 
gence of velocity vanishes everywhere consistent with the assumption of endolymph 
incompressibility. 

The equations governing the fluid are cast in terms of the locally orthogonal 
toroidal coordinate system (r', cp, s') defined by the transformation from the Cartesian 
coordinates (XI, y*, z * )  given by 

x* = (r* cos cp + &) cos(s*/&), 

y' = (r* cos cp + &) sin(s*/&), 

Z* = r* sin cp. 

(2.2) 

(2.3) 

(2.4) 

Here r* and cp are the polar cross-sectional coordinates and S* is the axial coordinate of 
a toroid of constant radius of curvature 1/&. Figure 2 shows orthographic projections 
of the three-dimensional geometry which is used to model the horizontal semicircular 
canal of the oyster toadfish, Opsanus tau. The Navier-Stokes equations are expressed 
in these toroidal coordinates and non-dimensionalized. The dimensionless variables 
are defined as follows: 

and 

where 1 = 2n& is the length of the toroid, U is the characteristic velocity, m is the 
characteristic frequency, and a0 is the characteristic cross-sectional radius of the duct 
(numerical values for the parameter sets used in this analysis are listed in table 1 for 
the toadfish canal system). The dimensionless equations of motion are expanded in 
powers of the slenderness ratio, E = ao/L They are given by Rabbitt & Damiano 
(1992) to O ( E )  as follows: 

u = U'/U ; p = &p*/;pU2, (2.5) 

r = r'/ao ; s = s'/l ; t = cot', (2.6) 

1 a P  + u, * vcvs  - -v:vs + - - + O(&) = 0, 2 as 
s t  av, 1 -- 
Re at Re 

a p  + O(&) = 0, a P  - + O ( & ) = O  ; -- 
ar r acp 

where S t  = a im/v  and Re = Uao/v are the Stokes and Reynolds numbers, respec- 
tively. Here we mean by the subscript c that the differential operator or vector is to 
apply to the cross-sectional coordinates only. Thus, u, is the cross-sectional velocity 
vector given by v,e,+v,e, where e, and ecp are the unit base vectors in the cross-section 
of the toroidal coordinate system. The gradient and Laplacian over the cross-section 
are defined in the usual way such that 

a i a  a 2  i a  i a 2  

" a r  racp ar2 r ar r2acp2 
V - -e, + --e, and V, = - + -- + --. 
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FIGURE 2. Orthographic projections of the geometry used to model the horizontal semicircular 
canal of the toadfish, Opsanus tau. The gross geometry was obtained from a tracing (top) of a 
digitized micrograph showing the outline of the horizontal canal of an adult toadfish perpendicular 
to the plane of the duct. In constructing the orthographic projections for the three-dimensional 
model geometry, individual cross-sections were assumed to be circular with their centres falling 
within a single plane. The actual geometry consists of elliptical cross-sections in which the minor 
and major axes vary along the length of the canal. The locally orthogonal toroidal coordinates are 
superimposed on the orthographic projections and the Cartesian coordinate position vectors are 
shown relative to the canal tracing. 

For the special case of sinusoidal rotation of the head, a solution is sought in the 
form of an asymptotic expansion of the velocity and pressure. Furthermore, the 
cross-sectional velocity vector, uc, is taken to be O(E)  in the long-and-slender outer 
region but not in the ampulla. For the case of pure rotation then, the dependent 
variables in the outer region are expanded in the form 

v c  - EU,, + &2Uc2 + . . . , 
uso + ED,,  + E2Vs2 + . . . , 

P - Po + Epl + E2p2 + . * . . 
21s 

(2.9) 
(2.10) 
(2.11) 

Substitution into (2.7) and (2.8) provides the leading-order model of momentum 
conservation in the canals. Accordingly, by (2.8), the pressure, po, is a function 
only of the axial coordinate, s, and time, t .  Furthermore, in light of the asymptotic 
expansions above, the s-momentum equation, given by (2.7), is linear in use. 

Applying the no-slip condition, the velocities of the fluid and the duct wall must 
match at their interface. To leading order, in the case of pure rotation, the boundary 
condition is given by vsolw = R ( s ) o ( t )  where the subscript w refers to the duct wall, 
R(s)  is the normalized distance from the centroid of the duct to the centre of a given 
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Parameter or Property 
ao, characteristic cross-sectional radius of duct 
1 ,  length of duct 
E = ao/l ,  slenderness ratio 
1/& = 27~11, characteristic radius of curvature of duct 
Ri = IRi - P'I, distance from canal centroid to centre of cupula 
a; = soap, cross-sectional radius of cupula 
A; = mi2, cross-sectional area of ampulla at cupula 
p, endolymphatic fluid density 
v = p/p ,  endolymphatic fluid kinematic viscosity 
p p ,  cupula partition density 
v p  = p p / p p ,  cupula partition kinematic viscosity 
T ,  cupula partition membrane stiffness 
h, cupula partition thickness 

/' x R * ds,, inertial forcing coefficient 
0 

n - ds, 
, mass coefficient 

Re 

Im 

(1' $ n - ds,) , real part of viscous coefficient 

Value 
0.019 cm 
2.75 cm 
0.007 
2.29 cm-' 
0.4 cm 
0.09 cm 
0.025 cm2 
1.0 g cm-3 
0.0085 cm2 s-l 

1.0 g cm-3 
0.0085 - 29.0 cm2 s-l 

0.0035 - 0.35 dyn cm-' 
0.05 cm 

1.04 cm2 x 2a/12 

3.30 x lo7 cmP3 x a:/l 
(at 1 Hz) 

3.15 x lo5 cmP3 x a:/l 
(at 1 Hz) , imaginary part of viscous coefficient 

TABLE 1. Physical parameters and properties of the canal, endolymphatic fluid, and cupula partition 
in the toadfish, Opsanus tau. The dimensionless coefficients of terms appearing in the transcupular 
differential pressure given by (2.14) are also listed for the toadfish geometry. 

cross-section at s, and h(t) is the non-dimensional angular velocity of the duct wall 
(where the dot indicates an ordinary time derivative). 

The resulting model is transformed into an inhomogeneous equation with homoge- 
neous boundary conditions by introducing the variable u = v, - vslw which represents 
the relative velocity of the endolymph in the axial direction with respect to the duct 
wall. The resulting O( 1) equation and boundary condition are given by 

st auo 1 1 ap0 St .. 
- V , U O + - -  =--R,Q, 

Re at Re 2 as Re 
and 

uolw = 0. 

(2.12) 

(2.13) 

The contribution of the outer region to the pressure differential acting across 
the ampulla is determined from the endolymphatic fluid dynamics. Following the 
procedure of Rabbitt & Damiano (1992), (2.12) is integrated over the cross-section, 
A(s), and then over the length of the duct to obtain the pressure differential, Apo. 
Applying the divergence theorem, and making use of integral continuity for an 
incompressible fluid, provide the zero-order pressure differential in terms of the 
displacement of the cupula and the viscous interaction between the endolymph and 
the duct wall. A viscous-shear-stress factor, A, is defined which accounts for the 
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influence of the shape of the cross-sectional velocity profile on the viscous drag at the 
wall. Solving for the endolymphatic velocity field from (2.12), the pressure differential 
is determined implicitly in terms of the leading-order displacement, WO,  of the cupula 
partition. This is given by 

where A,  is the region of integration corresponding to the dimensionless 

(2.14) 

area of the 
cupula partition, R is the dimensionless position vector from the axis of rotation to 
the centre of a given cross-section at s, ds, is the differential tangent vector to the 
curvilinear path along the centreline of the duct, and n is the unit tangent vector to 
the axial curvilinear coordinate curve. The dimensionless differential pressure given 
above applies only to the outer region and accounts for the first three terms on the 
right-hand side of (1.1). The derivation of the remaining term is provided in $3. 

The viscous-shear-stress factor, I ,  appearing in the third term of (2.14), is a 
complex-valued frequency-dependent function of s and is given by 

(2.15) 

The parameter I determines the magnitude and phase of the viscous shear stress at 
the wall relative to the flow rate. At low frequencies, where the velocity profile is 
approximately a Poiseuille flow, the viscous-shear-stress factor is 871 for a circular 
tube. Pedley, Schroter & Sudlow (1971) describe an analogous parameter (referred to 
as Z rather than A) in terms of the rate of energy dissipation for various flows (e.g. 
entry flow into a tube, turbulent flow in a tube, and tube flow near branches) relative 
to the energy dissipation rate which accompanies fully developed Poiseuille flow in a 
straight cylindrical tube. 

For the case of axisymmetric flow in the long-and-slender portion of the duct, the 
endolymphatic velocity profile is given by the Fourier-Bessel series 

(2.16) 

where k;(s) = a;(s) + iSt, = p,'/a2(s), and the eigenvalues, pn, are the zeros of 
the zeroth-order Bessel function, Jo. Unless otherwise indicated, the notation Jon is 
meant to represent Jo(a,r). The inner products above are defined with respect to the 
cross-section such that 

(f,g) = /J fgda.  (2.17) 

The amplitude function, g(s), is determined by substituting (2.16) into the integral 
form of continuity given by 

A 

With the unsteady velocity profile determined from 
factor, given by (2.15), may be readily ascertained. 
imaginary parts of A plotted as a function of the local 

(2.18) 

(2.16), the viscous-shear-stress 
Figure 3 shows the real and 

Stokes number. The curves are 
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FIGURE 3. The frequency dependence of the real and imaginary parts of the viscous-shear-stress fac- 
tor, 1, is shown for the case of sinusoidal flow in a tube of circular cross-section. Results are computed 
using (2.15) and are shown as a function of the local Stokes number, (St), = a(s)St = u ' * (s )w /v .  
Notice that below a Stokes number of 1, the unsteady effects are unimportant. As a result, the 
velocity profile in the long-and-slender region of the duct is essentially Poiseuille over the entire 
physiological frequency range but involves unsteady phase and viscous drag effects in the utricle 
and in the ampulla. In the present model, the unsteady flow in the utricle is included as part of the 
outer-region solution and coupling of the unsteady flow to the cupula is included in the ampullary 
boundary layer. 

normalized with respect to 8n which corresponds to the steady value for Poiseuille 
flow in a circular duct. For the toadfish, in the long-and-slender portion of the duct 
where the cross-sectional radius is approximately 0.019 cm, a Stokes number of 1 
corresponds to a frequency of 3.75 Hz, whereas in the ampulla the same Stokes 
number corresponds to a frequency of approximately 0.17 Hz. Thus, the unsteady 
effects play a significant role in influencing the shape of the velocity profile in the 
ampulla and utricle at upper physiological frequencies but are of little consequence 
in the long-and-slender portion of the duct. 

3. The boundary layer 
The perturbation method which was applied in the previous section to the outer 

region exploited the slenderness ratio of the toroidal duct allowing us to order the 
relative size of the derivatives appearing in the Navier-Stokes equations. We found 
the cross-sectional derivatives of the fluid velocities to be much larger than their 
counterparts in the axial direction. This is a consequence of the slender geometry. 
However, this asymptotic ordering is not uniformly valid over the entire flow field. 
In particular, within a relatively small layer surrounding the cupula, the rate of 
change of the velocity profile with respect to the axial direction is quite large, 
particularly at high physiological frequencies. In this ampullary 'boundary-layer' 
region, the magnitude of the axial derivatives approaches those in the cross-section so 
the outer-region solution does not apply. Physically this corresponds to a transition 
flow that matches the fluid moving with the deflected shape of the cupula to the 
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velocity profile in regions far from the cupula. At low frequencies the influence of 
the ampullary boundary layer is negligible. However, when the forcing frequency is 
large (above 1 Hz) the multi-dimensionality becomes more pronounced and the local 
entrainment of endolymph by the cupula plays an important role. To quantify this, 
we match the fluid dynamics in the outer region to a boundary layer acting within 
the ampulla. 

The boundary-layer term, A&, is found by solving the three-dimensional Navier- 
Stokes equations within a layer on each side of the cupula and requiring that the 
solution asymptotically match the outer-region solution far from the cupula. We begin 
by considering the non-dimensional momentum equation in the s-direction expanded 
in powers of the slenderness ratio, E ,  given by 

21, av, 
2 as 271 as vrvscoscp - vqv,sincp + -- st av, 1 

-- + u, *vcv, - -V;V, + 
-1 (coscp---- av, sincp dv, 

Re ar r acp 

Re at Re 

sin cp vqvs - cos cp v,v, - - - 
2.n as 

+ r2 cos2 cp -- 47c2c2 + 0(c3 )  = 0. 
2 ""1 as 

We define a boundary-layer coordinate, 5, corresponding to a stretching of the s- 
coordinate in which the stretching factor depends on E according to s" = (s - s ~ ) / E '  
where ct is positive and sp is the s-coordinate location of the cupula partition. On 
one side of the cupula sp = 0 and s" >, 0, on the other sp = 1 and 5 < 0. In the 
boundary layer the cross-sectional velocity components may be of the same order of 
magnitude as the axial component. We define the velocity vector there to be given by 
v" = v"(r, cp, 5, t )  = 5, + E,e, and assume an asymptotic expansion in the boundary layer 
given by 

( 3 4  

(3.3) 

(3.4) 

Here, the multi-dimensional pressure distribution in the boundary layer is superim- 
posed on the cross-sectionally averaged O(1) pressure, po(s,t), found in the outer 
solution. Using these expansions in the momentum equation given by (3.1) and 
expressing it in terms of the boundary-layer coordinate, 5, the conservation of mo- 
mentum in the axial direction in the boundary layer is given by 

CC(r, cp, 5, t )  - Cc0 + EV",, + . . . , 
cS(r,  cp, F, t )  - cso + E C , ~  + c2cs2 + . . . , 
p(r ,  cp, 5, t )  - PO(:, t )  + + ~ ~ 8 2  + . . . . 
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Balancing powers of E ,  the distinguished limit (Kevorkian 8z Cole 1981) is a = 1 and 
we obtain the 0(1/~) problem in the boundary layer as being apo/as” = 0 or PO = po(t) 
only. Thus at any instant in time, po is constant throughout the boundary layers on 
both sides of the cupula and equal to its value on either side of the cupula at s = sp 
(which in general is different on one side than on the other). With this result, the 
O( 1) equation in the boundary layer reduces to 

st aes, 
Re at 
-- 

Since 5 = S / E ,  the O( 1) momentum equations governing the cross-sectional velocity 
vector, v“,, in the boundary layer become 

s t  aaro ak aa, + v”,, v,a, - - + as0 - 
Re at r as” -__ 

and 

s t  aa, ~ r o a q o  - aap0 + Cco v,a,, + - r + vso- as” -- 
Re at 

Thus the O( 1) equations of motion in the boundary layer reduce to the Navier-Stokes 
equations expressed in cylindrical coordinates applied to the velocity vector, v”. 

Imposing the no-slip boundary condition, the velocity of the viscous endolymphatic 
fluid must exactly match that of the rigid impermeable duct wall at their interface. 
For pure rotation, the 0(1) velocity of the duct wall is given by R(~Z)o(t)e,, where 
R ( E ~ )  is the normalized distance from the centroid of the duct to the centre of a given 
cross-section at s” and o(t) is the non-dimensional angular velocity of the duct wall. 
In the boundary layer, the dimensionless quantity R varies slowly with s” and has the 
expansion R(G) = R(0) + ~’s”R’(0) + . . .. Thus to a leading-order approximation we 
take this quantity to be constant and equal to its value at the cupula partition. In 
the boundary layer then, R is approximated by R(0) = Rp = %/& where Ri is the 
dimensional distance from the centroid of the duct to the centre of the cupula. This 
effectively neglects the curvature of the canal wall in the boundary-layer region (which 
is validated in 8 6 by numerical evaluation of the cupular boundary-layer thickness). 
For pure rotation of the duct, the endolymph velocity relative to the duct wall must 
vanish on the boundary as a result of the no-slip condition and impermeability of the 
duct wall. Thus, the leading-order boundary condition on the velocity, 50, is given by 
ZcOlw = 0 and fisoIw = Rp a, where the subscript w refers to the duct wall. 

We transform (3.6) into an inhomogeneous equation with homogeneous boundary 
conditions by introducing the variable ii = as - & I w  which represents the relative 
velocity of the endolymph in the axial direction with respect to the duct wall. To 
leading order, this transformation corresponds to iio = as,, - Rp 0. Expressing (3.6) in 
terms of the variable iio results in an O( 1) equation and boundary condition given by 

Eolw = 0, (3.10) 
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where v2 is the standard Laplacian corresponding to the cylindrical coordinates r ,  q, 
and s" given by 

Next, we attach a reference frame to the duct wall by defining the Galilean 
transformation = s" - Rp SZ Re/St. Determination of the derivatives with t and s" 
from the chain rule and substitution into (3.9) provide the nonlinear O(1) equation 
of motion governing the axial velocity component of the fluid in the boundary layer 
relative to the duct wall and referenced to a coordinate system attached to the duct 
wall. This is given by 

(3.11) 
aao 1 -2 1 apl  s t  s t  aao + z  + ~ o - - - v & + - - = - - R p ~ ,  
as Re 2 as Re c, c 0 -- 

Re at 
where the axial derivative in the Laplacian operator is now with respect to 5. 

In a similar manner, we apply the same Galilean transformation to the cross- 
sectional momentum equations and express them in terms of the relative axial velocity 
component, Eo. To leading order then, (3.7) and (3.8) become 

st aa,, Brofip, du",, 1 ( + &, * vcv",, + - +El)--- -- 
Re at r as Re 

(3.13) 
with the homogeneous boundary condition, ijc0 = 0. 

Equations (3.11), (3.12), and (3.13) are the scalar components of the Navier- 
Stokes equations, with the addition of a term similar to a body force, expressed 
in cylindrical coordinates in terms of the velocity vector Go = Cc0 + Goes. The 
endolymphatic fluid velocity deviates from the velocity of the duct wall only by 
a small perturbation. The vector GO represents this perturbation, as each of its 
components measures the velocity of the endolymph relative to the velocity of the 
duct wall when subjected to pure rotational motion. This being the case, any 
combination of products of any two of its components results in a quadratically 
small term. Neglecting such terms in (3.11), (3.12), and (3.13), we obtain the 
leading-order equations of motion, linearized about the velocity of the duct wall, 
given by 

(3.14) 

(3.15) 

(3.16) 

with the O(1) boundary condition, G0lw = 0. 

is given to 0(c2) by 
The differential continuity equation expanded in powers of the slenderness ratio, E, 

- + - + -- + u, cos cp - u, sin q + au, vr 1 av, 
ar r r dcp 

27te + O(E 2 ) = 0. (3.17) 2n as 
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Thus, to leading order the differential continuity equation in the boundary layer is 
given by 

(3.18) 

To completely define the problem in the boundary layer, we need to specify 
kinematic boundary conditions on the surface of the cupula at S = 0 and asymptotic 
matching conditions as 3 + +a. At the axial location of the cupula partition where 
s = sp and S = 0, continuity requires that the velocity of the endolymph match that 
of the cupula. We therefore impose the kinematic boundary condition given by 

(3.19) 

where wo(r, t )  is the leading-order axisymmetric displacement of the cupula. In 
a transitional region, as S + fa, the boundary-layer solution must be made to 
asymptotically match the regular perturbation solution in the outer region. On one 
side of the cupula, the boundary layer and outer region meet when S + 00 and s -+ 0; 
on the other side the transition occurs as S + -00 and s + 1. In passing from 
the boundary layer to the outer region, iio ceases to depend on S and we have the 
asymptotic matching condition 

(3.20) 

In addition to these conditions on the axial velocity component, we impose the no-slip 
condition on the cross-sectional components of the velocity vector, u",, evaluated on 
the surface of the cupula at 3 = 0. In general then, the radial and circumferential 
components, Or, and O,,, vanish at S = 0. Finally, we impose the asymptotic matching 
condition between the boundary-layer and outer-region solutions which requires that 
the cross-sectional velocity components are O ( E )  as S + 100. These conditions are 
given to leading order by 

u",,(r,O, t )  = 0 and lim u",,(r,S, t )  = 0. (3.21a, b) 
s++m 

An important observation to be made is the decoupling which occurs in the mo- 
mentum equations in the special case of axisymmetric flow. Under these circumstances 
all derivatives with cp vanish and (3.14), (3.15), and (3.16) decouple so that Or,, Ova, and 
Go can each be solved independently to an arbitrary function of integration. Further- 
more, since the boundary condition on 8,, is homogeneous and, in the axisymmetric 
case, the circumferential component of the pressure gradient vanishes, we see that O,, 
must also be identically zero. Axisymmetric flow in the boundary layer is therefore 
two-dimensional and we need only solve for the components Cr0 and iio in order to 
determine the pressure, j7l(r, S, t). 

In the interest of clarity and continuity, the somewhat lengthy details of obtaining 
a solution to the velocity and pressure fields in the boundary layer are omitted. Only 
the primary results of the analysis are presented here. For a full discussion of these 
methods, see Damiano (1993). The axisymmetric solution to (3.14) and (3.15) is 
developed in detail there with only minor differences in notation. 

3.1. Axisymmetric solution for 20 

To solve the inhomogeneous linear differential equation given by (3.14), we define a 
forcing function, g(r,F), such that the pressure gradient and inertial forcing terms in 
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(3.14) can be expressed as 

Re apl 
2 as g(r,S)eit = -- + S t R , d .  

347 

(3.22) 

Here we seek only the so-called transient-free solution and take 0 = -eit for sinusoidal 
rotation. Since the problem is linear with homogeneous boundary conditions, we can 
construct an eigenfunction expansion to the solution iio. The axisymmetric solution 
in the boundary layer for the axial velocity component, iio, which satisfies (3.14) for 
S 2 0 is given by 

+ eit (b ,  sinh(k,$) - &(o) sinh{k,(o - S ) }  do 

where k; = a; + iSt, a, = Bn/ap, and the eigenvalues, P,, are the zeros of the 
zeroth-order Bessel function, Jo. The coefficients g’, and won are defined as 

(3.24) 

where the subscript a indicates that the argument of the Bessel functions in the inner 
products is a,r. Thus, the undetermined coefficients, g , (S ) ,  represent the s-dependent 
Fourier-Bessel coefficients of the function g(r ,S )  expanded in terms of the modes of 
the fluid velocity vector’s axial component. Similarly, dwo, / a t  represent the Fourier- 
Bessel coefficients of the velocity of the cupula partition expanded in terms of these 
same fluid modes. The constants b, represent a countably infinite set of undetermined 
coefficients. 

The inner products in (3.24) are defined with respect to the dimensionless local 
cross-sectional area of the duct, A. In the boundary layer, this has the expansion 
A(&$) = A(0)  + ~ ~ s A ’ ( 0 )  + . . .. Similarly, the local cross-sectional radius, a, has the 
expansion in the boundary layer a(&$ = a(0) + ~ ~ S a ’ ( 0 )  + . . .. Thus to a leading-order 
approximation we take these parameters to be constant and equal to their values 
at the cupula partition. In the boundary layer then, a and A are approximated by 
a(0) = up = a;/ao and A(0)  = A, = A;/(7cna;) where a; and A; are the dimensional 
radius and cross-sectional area of the cupula partition, respectively. We therefore 
define the eigenvalues in (3.23) by the constants a, = B,/(a;/ao). This implies that it 
is sufficient to use a uniform cross-section in the boundary layer. 

The axial velocity component given by (3.23) was made to satisfy the kinematic 
boundary condition given by (3.19) whereas the asymptotic matching condition given 
by (3.20) imposes a restriction on gll .  In order to ensure that (3.23) asymptotically 
matches the outer-region solution in the transition from the boundary layer to the 
outer region, i.e. as S + 00, we seek a solution g,(S) which satisfies 

gn(o) sinh{k,(o - g)} do} = -7, gn(o)  (3.25) 

in the positive limit. 
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3.2. Axisymmetric solution for  Cro 

In obtaining the axisymmetric solution to (3.15), we interpret the radial component 
of the pressure gradient as a forcing function which depends on r, S, and t such that 

(3.26) 

Since the problem is linear with homogeneous boundary conditions, we can construct 
an eigenfunction expansion to the solution Cro just as was done for 60. Analogous 
to (3.23), we obtain the axisymmetric solution in the boundary layer for the radial 
velocity component, Cro, which satisfies (3.15) for S 2 0 given by 

B, sinh(rc,S) - h,(a) sinh{rc,(o - S ) }  do Jl(y,r), (3.27) 
n=l 

where ref = y; +i St, y n  = &/ap, and the eigenvalues, a,, are the zeros of the first-order 
Bessel function, J1. The coefficients, h,, are defined as 

(3.28) 

where the subscript y indicates that the argument of the Bessel functions in the inner 
products is ynr. Analogous to g, (S) ,  the undetermined coefficients h,(S)  represent the 
s-dependent Fourier-Bessel coefficients of the function h(r, S)  expanded in terms of the 
modes of the fluid velocity vector's radial component while the constants B, represent 
a countably infinite set of undetermined coefficients. 

The radial velocity component given by (3.27) was made to satisfy the boundary 
condition given by (3 .21~)  whereas the asymptotic matching condition given by (3.21b) 
imposes a restriction on h,. In order to ensure that (3.27) satisfies the asymptotic 
matching condition in the transition from the boundary layer to the outer region, i.e. 
as S + co, we seek a solution h,(S)  which satisfies 

B, sinh(rc,f) - - h,(o) sinh{rc,(o - S ) }  do 
Kfl I' (3.29) 

in the positive limit. 

3.3. The pressure gradient and velocity vectors in the boundary layer 

At this point, the velocity and pressure fields are known to within two arbitrary sets 
of constants, b, and B,, and two sets of functions &(S) and h,(S) (in addition to the 
Fourier-Bessel coefficients won which must be determined from the momentum equa- 
tion for the cupula). These unknowns are subject to the two asymptotic matching con- 
ditions given by (3.25) and (3.29). For closure, two more equations are necessary. One 
of these comes from a compatibility condition which is obtained by requiring that the 
mixed partial derivative of with respect to r and S commutes. Differentiating (3.22) 
with respect to r and (3.26) with respect to S, we obtain the compatibility condition 

ah - ag 
as a t  - _ -  (3.30) 

For the remaining equation we invoke the continuity equation. In the axisymmetric 
case, the differential continuity equation given by (3.18) depends only on Cr0 and Cs0. 
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Since a&o/a% = aiio/a%, we have for axisymmetric flow 

(3.31) 

By making use of these equations, we can reduce the number of unknowns. The so- 
lution of the continuity equation (3.3 l), subject to the compatibility condition (3.30) 
and the integral equations (3.25) and (3.29), determines the constants of integration 
g and h to within the unknown harmonically time-dependent constants, won. An 
additional equation governing the displacement of the cupula (see the Appendix) will 
provide the final equation necessary to determine these constants and thus achieve 
closure for the model. If we substitute the Fourier-Bessel series representations of g" 
and h into the compatibility condition given by (3.30), we obtain 

m m 

n=l n=l 

Since there exists no function which is mutually orthogonal to J1(ynr) and Jl(a,r) 
the infinite summations in (3.32) cannot be made to simultaneously collapse. We are 
confronted with the same obstacle if we use (3.31). In order to reduce the number of 
unknowns then, we assume the simplest admissible solution form for the coefficients 
h, which satisfies the integral equation given by (3.29). In a similar way we assume 
a solution form for the coefficients gn which satisfies the integral equation given by 
(3.25) and which can be made consistent with our compatibility condition given by 
(3.30). With the functions gn and h, known each to an arbitrary set of constants, 
we impose the differential continuity equation (3.31) which results in an expression 
allowing us to obtain a relationship between the constants associated with Z n  and the 
unknown Fourier-Bessel coefficients won. Finally, since we only require the pressure 
differential across the cupula, we obtain an expression for the pressure on the opposite 
side of the cupula, i.e. where % < 0, and determine the difference. We find that terms 
containing the unknown constants of integration cancel on both sides of the cupula 
leaving us with an expression relating the pressure differential to the amplitudes of 
the cupula partition's velocity, awon/at, expanded in terms of the fluid modes. This 
result is easily incorporated into a Galerkin approximation (see 0 5 )  or a finite element 
model to determine the response of the cupula to sinusoidal rotation. 

In constructing the solution form for g(r ,S)  and &(r,%) (Damiano 1993), we de- 
termine the %-dependence throughout the boundary layer to a two-fold infinity of 
unknown constants denoted by B, and K3. (in addition to the unknown Fourier- 
Bessel coefficients won). The resulting components of the pressure gradient and velocity 
vectors for % 2 0 are given by 

(3.33) 

n=l 
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and 

n=l 

3.4. The pressure diferential, Afj1 

With the goal of determining an expression for the pressure differential acting across 
the cupula, we seek to determine an expression similar to (3.34) for b < 0. Following 
the same procedure as before, we find that the axial component of the pressure 
gradient on the side of the cupula where 5 < 0 is given by 

(3.37) apl 4 a WO, " 

at 
- = - { ki- + eit eknsJo(anr), 

n=l 
as Re 

where gn(l) = -gn(0) is required by the asymptotic matching condition given by 
(3.25). This result is not unexpected since, in the outer region, integral continuity 
given by (2.18) requires that at any instant in time the total volume flow at every 
cross-section is constant. Since the cross-section of the duct in the boundary layer is 
taken to be uniform, the amplitude of the velocity profile where the boundary layer 
meets the outer region at s = 0 (on the horizontal-canal side of the cupula) must 
equal the amplitude at s = 1 (on the utricular side of the cupula). 

In order to find the pressure differential acting across the cupula, we integrate 
(3.34) and (3.37) with respect to S and thereby obtain expressions for the pressure 
drop on each side of the cupula. The difference in these at a fixed distance IS1 away 
from the cupula represents the pressure differential across the cupula as a result of 
only a portion of the boundary layer: that corresponding to the region extending 
a distance 151 into the boundary layer on both sides of the cupula. Passing to the 
limit then, as 151 + 00, we obtain the pressure differential acting across the cupula 
as a result of the cumulative effect of the entire boundary layer. Upon integration 
of (3.34) and (3.37) with respect to 3, the expressions for the pressure drop on 
the side of the cupula corresponding to S 2 0 and S < 0 are given respectively 
by 

and 

where ? indicates S 2 0 and S indicates S < 0. Subtracting (3.39) from (3.38), 
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we obtain 

where 

AP1(r, 151, t) = Pl@, r, t) - Plb.3 $, t). (3.41) 

The difference (from one side of the cupula to the other) in the pressure drop from 
the surface of the cupula to a distance IS/ away from the cupula is given by (3.40). 
In order to obtain the pressure differential across the cupula due to the cumulative 
effect of the entire boundary layer, we must consider the transcupular difference in 
the pressure drop through the boundary layer, from the surface of the cupula (at 
IS1 = 0) to the outer region (as IS1 -+ 00). Passing to the limit then, as IS1 -+ 00, we 
obtain 

(3.42) 

From (3.4) we can write 

APk, 101, t) - APo(l4 ,  t) + E AP1(r, 101, t) + . . . Y (3.43) 

where we have taken APo( 101, t) = APo( 1001, t) since Po is constant with respect to S in 
the boundary layer. Substituting for APl(r, 101, t )  from (3.42) into the expansion for 
AD from above we obtain 

In terms of the actual velocity of the cupula partition, the pressure differential across 
the cupula has the asymptotic form given by 

Combining this with the 0(1) solution obtained from the outer region given by (2.14) 
provides the relatively simple expression, given in the Introduction in dimensional 
form, for the pressure differential across the cupula. In non-dimensional form this is 
given by 

(3.46) 

where we have dropped the subscript a to the inner products and hereafter Jon will 
imply Jo(anr). The result assumes that the endolymph is Newtonian and the endolym- 
phatic duct and ampulla are rigid. No assumptions are made with regard to the 
cupula and the expression implicitly includes its deformation field. From (3.46) we 
see that the pressure differential acting across the cupula arises from four sources: 
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inertial forcing, endolymphatic mass and viscous loading on the cupula, and the 
multi-dimensional fluid dynamics within the ampulla. 

4. Simple model for the cupula: an example 
The cupular boundary condition (3.46) reduces the mechanics of endolymph flow 

and pressure for the entire canal to a dynamic boundary condition acting on the 
two leaflet surfaces of the cupula. Because of this the differential pressure can easily 
be incorporated into finite-element or similar numerical models describing cupular 
dynamics. In order to demonstrate this for a complete semicircular canal system, 
we couple the pressure differential to a simple viscoelastic membrane model of the 
cupula and solve the resulting equations numerically. 

Direct measurements of the mechanical properties of the cupula and its frequency- 
dependent deformation field do not appear in the literature and hence we rely 
upon indirect evidence to construct a model. Our approach in the present work 
is to employ the simplest model adequate to demonstrate the significance of the 
fluid-structure interaction. Such a minimal model should also be consistent with 
the limited experimental data available to date. There is experimental evidence 
suggesting that the cupula (i) has stiffness and resists deformation from its resting 
position, (ii) has viscosity and resists the rate of change of deformation from the 
resting position, and (iii) has a spatially non-uniform deflection field. Evidence of 
stiffness is provided by the lower corner frequency observed in the afferent responses 
of numerous species (Blanks et al. 1975; Boyle & Highstein 1990; Fernandez & 
Goldberg 1971; Hartmann & Klinke 1980; Landolt & Correia 1980; Segalonbein & 
Outerbridge 1982) and by observation of the cupula deflection resulting from static 
pressures (McLaren & Hillman 1979). Upon suction-pipette removal of the cupula 
from the ampulla, the cupula maintains some coherence when placed on a glass slide 
and moves as a deforming mass under mechanical probing. Coherence suggests the 
existence of at least some mechanical stiffness. In this manipulation however, the 
original geometry of the cupula is completely lost indicating that prestress is present 
in vivo. Also under in situ observation, the cupula appears to be highly viscous 
relative to the endolymph. This qualitative observation of viscosity is supported by 
measurements of the phase of endolymph pressure modulations recorded within the 
semicircular canal ampulla (Rabbitt, Boyle & Highstein 1995b). Finally, spatial non- 
uniformity of the deflection field is evidenced by the organized spatial distribution 
of afferent projections in the crista (Boyle, Carey & Highstein 1991; Goldberg, 
Lysakowski & Fernandez 1992) and by the diaphragm-like deflection field of the 
cupula observed under static pressure excitation recorded by McLaren & Hillman 
(1979). 

Consistent with the above observations we employ a minimal model of the cupula 
that has restoring force, prestress, viscosity, and spatial extent. For simplicity, the 
prestress and restoring force are achieved using a simple elastic membrane model. 
The restoring force associated with the membrane model appears in the resulting 
stiffness matrix and hence is termed ‘stiffness’. In reality, the cupula probably has a 
combination of elastic and prestress restoring mechanisms. As noted later however, 
numerical results are similar for these two restoring mechanisms and hence we have 
elected to use the simpler of the two for the present example calculation. Viscosity is 
included using a linear Newtonian mechanism. Since the endolymph is also modelled 
as Newtonian, matching the viscosities and letting the cupular stiffness approach 
zero has the effect of replacing the cupula with endolymph. Such a limit allows 
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investigation of the unsteady fluid dynamics within the ampulla in the presence of, 
or in the absence of, the cupula using a single numerical code. 

The model cupula completely spans the cross-section of the ampulla. It is a 
relatively thick structure but is reduced here to two dimensions by assuming uniform 
deformation through the thickness. Clearly this is a highly restrictive assumption 
and prevents direct application of this cupula model to mammalian species where the 
cupula is inherently three-dimensional and extends down the curved sides of the crista. 
In the present example, we apply the model to the geometry of the toadfish canal in 
which the sensory epithelium is two-dimensional and the surface between the cupula 
and the crista is relatively flat (Boyle et al. 1991). The cupular boundary condition 
given by (3.46) is not restricted by this simplification and can be applied to more 
general three-dimensional models of the cupula. Since this work is focused primarily 
on the multi-dimensional fluid dynamics, in this initial work we apply the boundary 
condition to a simple two-dimensional model of cupular dynamics. The cupula model 
is written in a form valid for any cross-sectional shape. Specific numerical results 
are provided only for the axisymmetric case where the cupula is further simplified 
to have a circular boundary. Relaxing these assumptions remains a subject of future 
work. 

We arrive at the coupled model by substituting the pressure differential given by 
(3.46) into the simple cupular model given by (A 2) in the Appendix to obtain 

a2 

+& (a: + iSt)1’2 (awolat’ J o n )  Jo(crnr) - V, * (yV, wg) 
Re n=l (Jon 7 Jon ) 

-? (1 1 
- - 

Re PIPP 
subject to the fixed boundary conditions imposed on the cupula given by (A 3). 

5. Example numerical solution 
To solve this equation we employ the numerical method of weighted residuals 

attributed t3 Galerkin. We limit our attention to sinusoidal motion and approximate 
the transient-free axisymmetric deformation field of the cupula by the series 

N 

n=l 

where qn(r) are comparison functions meeting the geometric or essential boundary 
conditions of the partition (Reddy 1984). Substituting this approximation into (4.1), 
multiplying by qm(r), and integrating over the cross-section provide a linear N x N 
system of equations. When solved for the amplitudes, X,, we have the following 
matrix form: 

k = (-M + i c  + K)-’P, (5.2) 
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where 2 and E are column vectors containing the elements X n  and F,, and M, C, and 
K are the mass, damping, and stiffness matrices, respectively. The elements of the 
matrix coefficients and the forcing vector, 5, are 

where we have truncated the infinite sum associated with the boundary layer to J 
terms. The integral coefficients appearing in the mass, viscous, and inertial forcing 
terms were determined numerically for the toadfish geometry and are reported in 
dimensionless form in table 1. 

6. Theoretical results 
6.1. Spatially averaged results 

Results for the deflection of the cupula averaged over the ampullary cross-section are 
provided in figure 4. The practice of vestibular physiologists is to show the response 
to sinusoidal rotational stimulation in the form of Bode plots. In this format the gain 
of cupular displacement is defined with respect to the peak angular velocity of the 
head. The convention adopted for the phase is that a quantity with zero phase is 
aligned with head velocity, a 90" phase lead (+90") is aligned with head acceleration, 
and a 90" phase lag (-90") is aligned with head displacement. In figure 4, panels 
( a )  and ( b )  show the gain and phase of the spatially averaged cupula deflection and 
(c) and ( d )  show the gain and phase of the spatially averaged transcupular pressure, 
respectively. The spatially averaged transcupular pressure is defined as the average 
pressure acting on the canal-lumen side of the cupula minus that on the utricular 
side. 

Results for the spatially averaged deflection of the cupula are in quantitative 
agreement with previous morphologically descriptive models (Oman et al. 1987; 
Damiano 1993). The spatially averaged transcupular pressure is also in quantitative 
agreement with previous work (Rabbitt et al. 1994). This agreement holds even 
though previous models completely ignore the boundary-layer term. The reason 
stems from the fact that the outer-region analysis entirely captures the spatially 
averaged pressure acting across the cupula and the boundary layer only contributes 
to spatial variations. Hence, when we average across the surface of the cupula the 
boundary layer does not contribute. In contrast, the boundary layer is fundamental 
to the role the endolymph plays in entraining the motion of a local point on the 
cupula with the neighbouring regions and to the spatially dependent results described 
below. 
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FIGURE 4. The frequency response predicted by the outer-region model, when the ampullary 
boundary layer is ignored, is shown here for the toadfish geometry in the form of Bode plots. Results 
give the average displacement gain (a) and phase ( b )  of the cupula and differential pressure gain ( c )  
and phase ( d )  across the cupula relative to the angular velocity of the head. For comparison, afferent 
response data for low-gain (LG), high-gain (HG), and acceleration (A) type units, as reported by 
Boyle & Highstein (1990) in the toadfish, are also shown in ( e )  and 0. A stiffness of 0.35 dyn cm-l 
is shown to produce the same lower corner frequency as measured on the vestibular nerve. The 
higher corner frequency which appears in the average displacement gain is independent of the 
stiffness and occurs at about 20 Hz. These results supersede the spatially averaged gain and phase 
given by Rabbitt & Damiano (1992) which contain a numerical error that is corrected here. 
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6.2. Spatially dependent results 
The principal analytical result of the present work is to lump the three-dimensional 
endolymphatic fluid dynamics into a two-dimensional boundary condition that relates 
the pressure across the cupula to the motion of the cupula. This boundary condition 
is given in non-dimensional form by (3.46) and in dimensional form by (1.1). It 
includes the three-dimensional morphology of the endolymphatic duct, the unsteady 
fluid dynamics throughout the entire duct, and the multi-dimensional fluid-structure 
interaction at the cupula. 

The boundary-layer part of the endolymph-cupula interaction is crucial to the abil- 
ity to address the pointwise displacement field of the cupula or the local stimulation 
of the stereociliary bundles. This is illustrated by results for the gain and phase of the 
cupular shear angle at the interface with the crista which provides a local measure of 
cupula deflection relevant to the deflection of the hair bundles. The shear angle shows 
strong sensitivity to the boundary layer that is completely absent in the spatially aver- 
aged results, especially in the high-physiological frequency range. Figure 5 shows the 
cupular shear angle computed at the crista for several values of stiffness. Notice the 
increase in the local gain and phase above 1 Hz that is absent in the spatially averaged 
results (figure 4). These results correspond to an axisymmetric cupula, so this example 
does not address spatial diversity along the surface of the crista but simply illustrates 
the fundamental difference between the local and spatially averaged results. 

The increasing importance of the boundary layer with increasing frequency is also 
evidenced by the boundary-layer thickness shown in figure 6. Recall from (3.40) that 
the multi-dimensional differential pressure distribution through the boundary layer 
decays exponentially as the distance from the cupula is increased in proportion to 
e-WkISI). w e  
the boundary 
arrive at 

can use this fact to determine the effective normalized thickness of 
layer, tila;, from the area under the exponentially decaying curve to 

9312  

where St, is defined with respect to a;, the radius of the ampulla at the cross-sectional 
location corresponding to the cupula. In addition to the frequency, the length of the 
boundary layer depends on the cross-sectional radius of the ampulla, on the endolym- 
phatic viscosity, and on the eigenvalues of the viscous fluid modes. Figure 6 shows 
the normalized boundary-layer thickness, tila;, on one side of the cupula plotted as a 
function of frequency. The boundary-layer thickness associated with the first and sec- 
ond fluid modes decreases markedly as the frequency is increased. As a consequence, 
the rate at which the velocity profile changes through the boundary layer increases 
with frequency as does the associated magnitude of the viscous shear stress. This 
stress is further amplified by increased spatial complexity of the cupular deformation 
field with increasing frequency. It is precisely this increase in viscous shear stress that 
makes it necessary to include the ampullary boundary layer at higher frequencies. 

7. Discussion 
7.1. The cupular boundary condition 

The principal result of the current work is the derivation of the cupular boundary 
condition given by (1.1). From a complicated system of differential equations, this 
result extracts four relatively simple terms having clear morpho-physiological origins. 
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FIGURE 5. The response of the horizontal semicircular canal of the toadfish as predicted by the 
model, including the contribution of the boundary layer, is shown in terms of Bode plots of (a )  the 
gain and ( b )  the phase of the cupular shear angle at the crista. Results show that the pointwise 
response is significantly influenced by the boundary layer but the spatially averaged cupular gain 
and phase are not - i.e. spatially averaged macromechanical results including the boundary layer are 
identical to the outer-region results that completely ignore the ampullary boundary layer (figure 4). 
For a cupular membrane stiffness below 0.035 dyn cm-', the viscous drag due to the boundary layer 
significantly influences the dynamics of the cupula whereas a higher cupular stiffness constrains the 
velocity profile of the fluid in the boundary layer and reduces the influence of the boundary layer. 
For a cupular viscosity several orders of magnitude greater than the endolymph, the influence of 
the boundary layer is overwhelmed by the dissipation in the cupula. In this case, the gain and phase 
of the pointwise response is qualitatively the same as the spatially averaged response including the 
location of the upper and lower corner frequencies. 
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FIGURE 6. The boundary-layer thickness, t i ,  as given by (6.1) and scaled by the radius of the ampulla, 
a;, is shown as a function of frequency and the ampullary Stokes number for the first four fluid 
modes. The curves show the normalized boundary-layer thickness, tila;, on one side of the cupula; 
another boundary layer of equal thickness exists on the other side. As the frequency increases, 
the thickness of the boundary layer decreases. This means that the velocity profile changes over a 
shorter distance and as a result the viscous shear stress in the boundary layer increases significantly 
with frequency. 

The first term, denoted by Ap;, is the inertial forcing resulting from the acceleration 
of the endolymphatic duct wall which is proportional to the angular acceleration of 
the head, 8'. The magnitude of this term depends upon the integral over the length 
of the duct of the projection of the tangential acceleration, d ' x  R', in the direction 
of the duct wall. The expression for Ap;, given by (1.2), is valid for any rigid-body 
motion of the head. Notice that the inertial forcing coefficient is independent of the 
local cross-sectional shape of the duct but depends locally on the distance between the 
duct wall and the axis of rotation. The inertial forcing arising from the acceleration 
of the duct wall is analogous to a time-dependent body force. As such, it acts on 
the endolymph much in the same way that a gravitational force acts on a column of 
fluid where the hydrostatic pressure depends only on depth and is independent of the 
shape of the container. Since the cupula deflects, allowing endolymph flow relative 
to the motion of the duct wall, Ap; is slightly greater than the differential pressure 
across the cupula. This difference is accounted for by pressure losses arising from 
endolymphatic mass and viscous loading on the cupula. 

The effective mass loading, Apk, is equal to the component of the mass acceleration 
of a differential length of endolymph integrated over the length of the duct and 
weighted by the local inverse cross-sectional area. The inverse-area dependence 
appearing in Apk is accounted for by recognizing that the endolymphatic mass 
loading on the cupula is related to the kinetic energy of the endolymph moving 
relative to the head. Since the volume flow over every cross-section is equal, the 
relative fluid velocity, and its associated kinetic energy, is much greater in the long- 
and-slender portion of the duct than in the utricle where the cross-sectional area is 



Fluid dynamics in the vestibular canal and ampulla 359 

larger. Thus the contribution from the endolymph in the long-and-slender portion of 
the duct dominates the effective mass loading on the cupula. 

The viscous drag arising between the endolymphatic fluid and the duct wall induces 
an additional pressure drop along the length of the duct. This generates an effective 
viscous loading on the cupula and is given by Ap:. The drag depends on the geometry 
of the duct, the volumetric flow rate, and the shape of the velocity profile. The effective 
viscous loading is inversely proportional to the square of the local cross-sectional area 
of the duct. Similar to the effective mass loading, the long-and-slender portion of the 
duct also dominates the effective viscous loading on the cupula. Owing to its large 
cross-sectional area, the viscous drag in the utricle is small and does not contribute 
significantly to the differential pressure across the cupula. 

For oscillatory flow in the horizontal canal, the frequency-dependent velocity profile 
exists in two distinct shapes, one in phase with the motion of the duct and the other 
out of phase. This unsteady effect, elicited here by harmonic motion of the duct wall, 
is similar to that studied by Womersley (1955, 1958) for an internal flow induced by 
imposing a harmonically varying pressure gradient. When the unsteady forces are 
small relative to the viscous forces, the velocity profile assumes an almost parabolic 
distribution which minimizes the viscous drag between the endolymph and the duct 
wall. As the unsteady forces increase, the velocity profile becomes more complicated 
(see figure 7) with an increased slope and greater viscous drag at the wall. This 
unsteady effect, which influences the shape of the velocity profile, depends on the 
volumetric flow rate and the geometry of the duct (both in terms of the size and shape 
of the cross-sectional area). It is accounted for in Api by the frequency-dependent 
viscous-shear-stress factor, 2 (see figure 3), which determines, from the shape of the 
velocity profile, the magnitude and phase of the shear stress at the wall relative to the 
dimensionless volumetric flow rate. In the long-and-slender portion of the duct, the 
velocity profile is almost identical to a steady Poiseuille flow over the entire range of 
physiological frequencies and thus the unsteady effects do not play a significant role 
there. It is only in the utricle and ampulla, where the cross-sectional area is large, 
that the unsteady out-of-phase component becomes important. 

The aforementioned mass and viscous terms account for the effective loading of 
the entire loop of endolymph in the outer region on the cupula. These terms do not, 
however, address local mass entrainment by the cupula or viscous dissipation. In 
deriving these terms, spatial dependence was integrated out of the cupular deformation 
field. The boundary-layer term, Apt,, accounts for the combined mass and viscous effect 
associated with the local multi-dimensional fluid dynamics within the ampulla. Owing 
to the viscoelasticity of the cupula and the enlarged ampullary radius, the velocity 
profile of the endolymph on the surface of the cupula undergoes a significant change 
in shape from the high-Stokes-number flow in the ampulla, through the boundary 
layer, to the simpler profile in the outer region. In this transitional region, the viscous 
forces associated with changes induced in the velocity profile introduce mode coupling 
into the vibrational shapes of the cupula. This local viscous drag in the ampullary 
boundary layer is accounted for by Apt, which represents the cumulative effect, over 
the entire length of the boundary layer, of the viscous pressure loss associated with 
the change in shape the velocity profile experiences through the transitional region. 
In addition to the viscous effect, the fluid dynamics in the ampullary boundary layer 
causes an entrainment of endolymph by the cupula. The entrained endolymph, which 
follows the pointwise displacement of the cupula, results in a local mass loading 
effect. The amount of entrained mass correlates with the thickness of the boundary 
layer (see figure 6). In addition, the boundary-layer thickness is also related to 
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the local viscous drag in the ampulla. At low frequencies the fluid dynamics in 
the ampulla corresponds to a low-Stokes-number flow resulting in a Poiseuille-like 
cupular displacement profile. Under these circumstances the boundary-layer thickness 
is large resulting in little viscous dissipation through the transitional region (in fact, 
at frequencies below 1 Hz there is essentially no transitional-flow region). At higher 
frequencies the unsteady fluid dynamics plays a greater role and the boundary-layer 
thickness decreases resulting in greater viscous action required to change the shape 
from the complicated velocity profile at the surface of the cupula to the simpler 
low-Stokes-number profile in the outer region. 

Since the outer-region solution cannot address the spatial distribution of the 
cupular deformation field, it is necessary to include Api in order to quantify the 
multi-dimensional fluid dynamics within and ampulla, its interaction with the cupula, 
and the relationship between the micromechanical deformation field of the cupula and 
the afferent response measured within the vestibular nerve. Specific numerical results 
applying all four terms are provided for the geometry of the toadfish horizontal 
canal using a simple axisymmetric model of the cupula. In the discussion which 
follows, we consider (i) the spatially averaged response dynamics predicted by the 
outer-region solution, (ii) the fluid dynamics within the ampulla in the absence of 
any fluid-structure interaction with the cupula, (iii) the influence of the cupula on the 
micromechanics and its response sensitivity to changes in cupular parameters, and 
(iv) how the micromechanics predicted here, for this simple axisymmetric model of 
the cupula, correlates to the afferent response measured within the vestibular nerve. 

1.2. Spatially averaged displacement and pressure 
Consistent with previous models, the velocity-proportional deflection of the cupula 
evident in the middle-frequency range arises owing to a balance between the viscous 
drag and inertial forcing of the endolymph (see figure 4). At frequencies below 0.1 Hz, 
the system becomes dominated by the stiffness of the cupula resulting in a decrease 
in the average displacement gain and an increase in the phase. Since the cupular 
stiffness, T ,  and viscosity, vp ,  represent the most uncertain parameters utilized in 
the current numerical examples, the effect of varying these parameters is considered 
throughout. For a cupular stiffness below 0.35 dyn cm-I the average displacement 
gain and phase remain approximately flat between 0.01 and 10 Hz with the average 
displacement of the cupula aligning approximately with the velocity of the head. 
Below 0.01 Hz the phase is seen to increase while the gain is seen to decrease with a 
corner frequency occurring near 0.01 Hz. A smaller stiffness results in a lower corner 
frequency. Also consistent with previous models, the spatially averaged gain is seen 
to decrease at high frequencies above 10 Hz accompanied with a decrease in phase 
as a result of endolymphatic mass loading acting on the cupula. 

For the present model geometry, a simple torsion-pendulum model predicts the mass 
cutoff at an upper-corner frequency of about 53 Hz which is higher than the present 
prediction of 20 Hz. This discrepancy is due to the relative size of the coefficients of 
the mass and viscous terms. Owing to the inverse area dependence appearing in the 
mass coefficient, the endolymph contributes more to the effective mass loading on the 
cupula in regions of small cross-sectional area than it does in the utricle where the 
cross-section is large. This is true to a greater extent for the viscous loading on the 
cupula owing to the inverse-square area dependence in the viscous coefficient. In the 
torsion-pendulum model, the mass and viscous coefficients are both over-estimated 
if they are computed for a toroid having a uniform cross-sectional area based on 
the slender portion of the duct. The fast time constant is given by the ratio of the 
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mass to viscous coefficients and is responsible for the location of the high-frequency 
cutoff in the gain. Thus, simple torsion-pendulum models typically over-estimate 
the viscous coefficient to a greater extent than the mass coefficient which results in 
underestimating the fast time constant. This in turn causes the corner frequency to 
occur higher in the frequency spectrum than is predicted by more descriptive models 
(Oman et al. 1987; Rabbitt & Damiano 1992). Nevertheless, both models predict a 
cutoff in the spatially averaged displacement gain at high frequencies. The spatially 
averaged gain and phase remain qualitatively unchanged as the viscosity of the cupula 
is varied. Substantially increasing the viscosity of the cupula only slightly lowers and 
widens the plateau of the spatially averaged displacement gain and leaves the phase 
relatively unchanged. 

The spatially averaged transcupular pressure monotonically increases as function of 
frequency and exhibits sensitivity to the stiffness and viscosity of the cupula. However, 
whereas the phase of the average displacement is relatively insensitive to the viscosity 
of the cupula, the phase of the pressure is not. This can be seen by comparing panels 
(b )  and ( d )  in figure 4. Results show that, while the average displacement of the 
cupula and the differential pressure are both sensitive to the macromechanical fluid 
dynamics, the pressure is far more sensitive to the properties of the cupula. 

The parameter sets represented in figure 4 include the case where the cupular 
stiffness, T ,  is taken to be 0.35 dyn cm-' since this value reflects the same lower 
corner frequency as is seen in the afferent data of the toadfish reported by Boyle 
& Highstein (1990). The stiffness that reproduces the lower corner frequency is 
considered an upper bound since adaptation mechanisms would only further increase 
the corner frequency. Considering progressively softer cases, each differing by an 
order of magnitude, helps illustrate a limiting trend as the stiffness goes to zero. In 
passing to this limit, the elastic restoring force is forfeited and the cupular model 
approaches a linearly viscous fluid. Such a limit is useful in $7.3 as we investigate 
the multi-dimensional fluid dynamics in the ampulla. Assuming that the viscosity of 
the cupula, vp, is bounded below by that of the endolymph, the case corresponding 
to v p  = 0.0085 cm2 ssl was included in figure 4, which is the value reported for 
the kinematic viscosity of endolymph by Steer et al. (1967). The larger value of the 
cupular viscosity shown for the case where v p  = 29.0 cm2 s-l (with a corresponding 
dynamic viscosity of 29.0 P) is an estimate taken from Rabbitt et al. (1994). Relatively 
large viscosities such as this are not uncommon in biological materials. For example, 
the gross dynamic viscosity of cytoplasm was reported as being 130 P in neutrophils 
(Schmid-Schonbein et al. 1981) and ranged from 0.097 to 0.28 P in red blood cells 
(Sutera, Mueller & Zahalak 1990). The apparent sensitivity to cupular viscosity is 
notable. 

For comparison, panels ( e )  and v> of figure 4 show the gain and phase of afferents 
from the toadfish horizontal canal nerve (Boyle & Highstein 1990). Within the afferent 
population, the variation in the response dynamics between individual afferent units is 
marked and continuously distributed. Boyle & Highstein (1990) grouped the afferents 
according to their response dynamics into three broad classes as reproduced here 
(low-gain, LG; high-gain, HG; and acceleration A). It is interesting that the dynamics 
of LG class afferents correlate well with the spatially averaged displacement of the 
cupula, and the response dynamics of A type units correlate with the macromechanics 
of the transcupular pressure. (Rabbitt et al. 1994). 

Since the analysis is linear, spatially averaged results obtained when ignoring the 
boundary layer (i.e. the outer-region solution taken alone) cannot be distinguished 
from the results shown in figure 4 for the full problem. This is due to the fact that 
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the boundary-layer pressure variation across the surface of the cupula averages to 
zero when taken over the entire cross-section. It is only when we address the spatial 
distribution of cupular deflection or transcupular pressure that the boundary layer 
becomes important. 

7.3. Fluid dynamics within the ampulla 
The analysis addresses the unsteady fluid dynamics within the endolymphatic duct 
during sinusoidal oscillation of the head. Two important dimensionless groups which 
arise are the Stokes number (which characterizes the ratio of unsteady inertial forces 
to viscous forces) and the Reynolds number (which characterizes the ratio of steady 
inertial forces to viscous forces). In the long-and-slender portion of the duct, the 
characteristic Stokes number (based on the characteristic cross-sectional radius of the 
duct) varies from 2.7 x to 27 over the frequencies ranging from 0.001 Hz to 
100 Hz.t The ampullary Stokes number (based on the radius of the ampulla at the 
cupula) is larger by approximately a factor of 22. Over this same frequency range, the 
Reynolds number associated with the long-and-slender region of the duct varies from 
5.4 x lop5 at 0.001 Hz to 5.4 at 100 Hz for a 1" peak-to-peak angular head amplitude. 
It should be pointed out that the Reynolds number used in our analysis is based on 
the characteristic velocity of the duct wall and not on the fluid velocity relative to 
the duct wall. The characteristic velocity U of the duct wall varies from 2.4 x lop5 
cm ssl at 0.001 Hz to 2.4 cm s-l at 100 Hz. If we compute a Reynolds number 
based on the average velocity of endolymph relative to the duct wall we find the 
relative Reynolds number varies from 1.5 x lo-" at 0.001 Hz to 0.4 at 100 Hz. This 
shows that the average velocity of endolymph relative to the duct wall is more than 
6 orders of magnitude smaller than the characteristic velocity at 0.001 Hz and more 
than 1 order of magnitude smaller at 100 Hz. Thus, the relative Reynolds number 
remains less than 1 over the entire physiological frequency spectrum resulting in a 
viscously dominated laminar flow within the long-and-slender portion of the duct. In 
the ampulla, these Reynolds numbers are larger by approximately a factor of 5. 

Owing to the long-and-slender toroidal geometry and the relatively low frequencies 
associated with physiological rotation of the head, the fluid dynamics in the slender 
regions of the canal corresponds to a Stokes number much less than 1 such that 
steady viscous effects dominate. As a result, the endolymphatic fluid dynamics in 
the long-and-slender duct is essentially characterized by a slowly oscillating Poiseuille 
flow. In the utricle and in the ampulla the cross-sectional area is sufficiently large 
such that unsteady cross-sectional modes play an important role, especially at high 
physiological frequencies of head rotation. We address this directly in the outer part 
of the asymptotic expansion by including the influence of the Stokes number on the 
magnitude and phase of the spatially distributed viscous drag force. 

Of greatest significance is the multi-dimensional fluid-structure interaction within 
the ampulla and its impact on the deflected shape of the cupula. Results show 
that the local deflection is not a simple reflection of the spatially averaged cupular 
displacement and hence the mechanical stimuli activating transduction are not simply 
proportional to the 'global' cupular deflection (see figures 5 and 8). This applies to 
both the gain and phase of the mechanical response and is significant at frequencies 
above approximately 0.3 Hz in the toadfish (the exact frequency is sensitive to the 

t The physiological-frequency range is usually defined below 10 Hz in experimental studies. 
Theoretical results presented here are extended to 100 Hz based on recent experimental data 
showing that canal afferents respond to high frequencies of mechanical stimulation (Rabbitt et al. 
1995b). 
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FIGURE 7. The fluid displacement profiles of the endolymph in the ampulla in the absence of the 
cupula are shown here over one cycle at 0.1, 1, and 10 Hz (with corresponding ampullary Stokes 
numbers of 0.6, 6, and 60, respectively where a; = 0.09 cm). At 0.1 Hz we see an essentially 
parabolic Poiseuille flow distribution. As the frequency increases above 1 Hz, the displacement 
gradient begins to steepen at the wall producing an almost slug-like flow at 10 Hz. The profiles 
shown here correspond to the case in which the cupular density and viscosity are equal to that of 
the endolymph and the membrane thickness and stiffness vanish. This choice of parameters results 
in the cupula imitating the endolymph and therefore gives the fluid displacement profiles as they 
would appear in the absence of the cupula. 

mechanical properties of the cupula). Since the gross morphology of the semicircular 
canals and the range of physiological frequencies in primates is similar to the toadfish, 
a difference between the local response and the spatially averaged response is expected 
to apply to other species as well. For example, Damiano (1993) provides results of the 
boundary-layer analysis for the human geometry which exhibit a similar deviation in 
the local response from the spatially averaged response. 

The enlargement of the canal at the ampulla contributes to the local/global disparity 
in two ways. First, the diameter of the ampulla is large enough that the local ampullary 
Stokes number exceeds 20 in the physiological frequency range (see figure 6). Because 
of this, even in the absence of the cupula, the endolymph does not acquire a 
Poiseuille profile in the ampulla as it does in the canal duct, but rather takes on a 
phase-dependent unsteady distribution. At these higher frequencies, the slope of the 
velocity profile at the wall, which reflects the cupular shear and associated stereocilia 
deflection, deviates substantially from the Poiseuille slope in both magnitude and 
phase (see figure 7). 

To illustrate the influence of the Stokes number on the ampullary flow, we present 
the case in which the density and viscosity of the cupula are identical to the endolymph 
and the stiffness is set to zero. In passing to this limit, the cupula, as we have modelled 
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it (see the Appendix), becomes a slice of fluid equivalent to endolymph which fills 
a cross-section of the ampulla. Ampullary endolymphatic displacement profiles are 
shown for this case in figure 7 over one cycle at frequencies of 0.1 (left), 1 (centre), 
and 10 Hz (right). A frequency of 10 Hz corresponds to a Stokes number of 60 
resulting in a more complicated slug-like displacement profile with a relatively steep 
slope at the wall as compared with the simpler Poiseuille-like profile which exists at 
0.1 Hz. 

The natural tendency of the fluid to acquire a more complex velocity distribution 
at high frequencies is compounded by a second effect of the enlarged ampulla - 
the enlargement increases the mobility of the cupula. Without the enlargement, 
interfacial molecular tension alone (existing between the cupula and the endolymph) 
could completely dominate the mechanical stiffness and substantially attenuate the 
macromechanical response. The increased mobility of the cupula, coupled with 
the stiffness of this structure, results in a more complicated interaction with the 
endolymph than occurs in the case when the cupula is absent as shown in figure 7. 
The implications of cupular stiffness and viscosity on the fluid dynamics are discussed 
below. 

7.4. Contributions of the cupula 
Even for the highly simplified cupular model employed here, the local response of 
the cupula is much more sensitive to model parameters than the spatially averaged 
response. For example, the angular shear of the cupula computed at the surface 
of the crista shows sensitivity to the cupular stiffness in the high physiological 
frequency range but the average cupular deflection is completely insensitive to the 
stiffness over this same range (see figures 4 and 5). This is true even for the simple 
axisymmetric homogeneous viscoelastic membrane model of the cupula. Given the 
geometry, inhomogeneity, and anisotropy of the actual cupula, we would expect it 
to exhibit even more spatial diversity in the local deflection field than this simple 
model predicts. These observations provide theoretical evidence that the mechanical 
deflection of the stereocilia, elicited by the semicircular canal mechanics, deviates from 
predictions of all two-time-constant models and all torsion-pendulum-type models in 
the high-frequency range. Since results show sensitivity to the cupular stiffness and 
viscosity, which are as yet unknown parameters, and since we have not included the 
ultrastructure or asymmetry of the cupula, we do not expect the high-frequency shear 
angle of the example results to reflect the actual angular deflection of the cupula. 
Nevertheless, results clearly show the impact of the ampullary boundary layer on 
the response and provide a straightforward means to include it in future models of 
cupular dynamics. Furthermore, for a physiological stimulus, the response dynamics 
shown in figure 5 result in amplitudes of the angular displacements of stereocilia 
that are within the physiological range based on the response of isolated hair cells 
elicited by stereocilia deflections (Hudspeth & Jacobs 1979; Corey & Hudspeth 1983; 
Fettiplace, Crawford & Evans 1992). 

We stress that the ampullary boundary layer (A& given by (1.5)) has almost no 
influence on the spatially averaged macromechanical endolymphatic flow or pressure, 
but influences the local cupular deformation field significantly. Previous models 
ignoring the boundary layer are not adequate to address the pointwise displacement 
of the cupula (see Damiano 1993 for more details). For a large cupular stiffness, 
such as the value which produces a lower corner frequency at 0.03 Hz, the ampullary 
boundary layer does not completely eliminate structural modes of vibration of the 
cupula. It is only when the cupula is very soft that the boundary layer dominates 
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and eliminates the structural modes of the cupula. If the stiffness of the cupula is 
selected to reproduce the average lower-corner frequency measured within the afferent 
nerve and the viscosity is low (equal to that of endolymph), then very low quality 
mechanical resonances are observed in the local deflection of the cupula at discrete 
frequencies. It is also possible that slow components of adaptation, such as associated 
with the transduction current (Assad & Corey 1992; Eatock, Corey & Hudspeth 1987; 
Highstein, Rabbitt & Boyle 1995), may contribute to the lower corner frequency. If 
adaptation is significant in shaping the lower corner then the lower values of stiffness 
shown in the example results may be the most physiologically relevant. Adequate 
experimental data are not currently available to resolve this ambiguity between the 
cupular stiffness and adaptation. 

Semicircular-canal hair-cell stereocilia can reach 100 microns in total length. This 
is substantially longer than stereocilia from otolithic or cochlear organs, but still 
represents only 5% of the distance across the ampulla. The cupular profiles shown 
in figure 8 indicate that the angular displacement along the length of a stereociliary 
bundle is relatively homogeneous. Although the distribution of deflection along the 
length of semicircular-canal stereocilia has not been measured to date, the present 
theoretical results suggest that the angular deflection along individual bundles is 
relatively uniform and that the angular deflection at the surface of the sensory 
epithelium is a reasonable measure of the mechanical activation. Complicating this 
apparent homogeneity in microdomain cupular shear angle, it is possible that some 
differential motion exists between the cupula and the embedded stereociliary bundles. 
Hence it is important to note that the motion of the cupula may not directly determine 
the nanomechanical motion of individual stereocilia or the associated transduction 
channel gating. In this sense, the angular deflection of the cupula at the surface of the 
sensory epithelium is recognized as a determinant of stereociliary bundle displacement 
and is not equal to bundle displacement itself. The present results do not address 
this difference. The present microdomain results simply apply to the ‘shear angle’ of 
a simple model cupula at the surface of the sensory epithelium. 

Whereas the spatially averaged displacement of the cupula is relatively insensi- 
tive to the broad range of cupular viscosities considered, the microdomain shear 
angle is not. Cupular viscosity introduces damping into the local displacement 
field of the cupula which results in dissipative mode coupling much in the same 
way that the boundary layer influences the local displacement field of the cupula. 
For the larger cupular viscosities shown in figure 5, the high-frequency shear-angle 
gain and phase enhancements which arise owing to the multi-dimensional fluid dy- 
namics in the ampulla are overwhelmed by the viscous effects of the cupula. For 
cupular viscosities several orders of magnitude greater than the viscosity of en- 
dolymph, we find that the local response dynamics at the cupula-crista interface 
is qualitatively indistinguishable from the spatially averaged displacement shown in 
figure 4. 

The sensitivity of the shear-angle gain to the stiffness of the cupula is shown 
in figure 5. Perhaps the most significant influence of the stiffness can be seen by 
comparing the displacement profiles at 10 Hz in figures 7 and 8. Whereas the 
fluid displacement profile in the absence of the cupula assumes an almost slug- 
like flow at 10 Hz (see figure 7), the presence of the elastic restoring force of a 
membranous structure results in the more complicated profiles at 10 Hz shown in 
figure 8. Displacement profiles are shown at several frequencies with a membrane 
stiffness of 0.035 dyn cm-’ and a density and viscosity equal to that of the endolymph. 
For the three frequencies shown, the corresponding Stokes numbers are the same as 
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FIGURE 8. The displacement profiles of the cupula are shown here over one cycle at 0.1, 1, and 10 Hz. 
Notice the effect that the membrane stiffness has on the shape of the profile at 10 Hz compared 
with the shape that the fluid profile would assume in the absence of the cupula (see figure 7). The 
profiles shown here correspond to a cupular stiffness of 0.035 dyn cm-' and a density and viscosity 
which is equal to that of the endolymph. For displacement amplitudes, refer to figure 5. 

those given for the displacement profiles of the endolymph shown in figure 7. The 
important distinction to notice between the displacement profiles with and without 
the cupula is the influence of cupular stiffness. The restoring force that the cupula 
exerts on the fluid serves to constrain the fluid to move with the cupula which in 
turn retards steepening of the displacement gradient at the wall for Stokes numbers 
greater than 1. 

Frequency-dependent cross-sectional pressure distributions acting over the surface 
leaflets of the cupula are shown in figure 9. The pressure fields were computed 
by subtracting the instantaneous outer-region pressure (i.e. Api - A& - Api, which 
is constant over the cross-section at any instant in time) from the overall pressure 
differential Ap* across the cupula predicted by the combined theory given by (1.1). 
Figure 9 shows the time development of the spatially dependent term in (3.45), or 
A& given in dimensional form by (1.5). It is interesting to note the magnitude of 
the cross-sectional variations in the differential pressure predicted by the boundary- 
layer solution compared with the instantaneous macromechanical differential pressure 
predicted by the outer-region solution alone. For example, for the profiles shown in 
figure 9, at 1 Hz the outer-region solution predicts a macromechanical transcupular 
differential pressure of 0.78 dyn cm-2 (for a zero-to-peak angular head amplitude of 
1 radian). According to the current theory, in certain locations in the cross-sectional 
distribution field, the spatial variability in pressure is predicted to be as much as 25% 
that of the macromechanical value (at 1 Hz this occurs near the centre of the duct 
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FIGURE 9. Shown here are the pressure distribution profiles in the ampullary boundary layer acting 
over the surface leaflets of the cupula which correspond to the displacement profiles shown in 
figure 8. The pressure profiles are computed by subtracting off the time-dependent outer-region 
solution which is uniform over the cross-section. This corresponds to the second term in (3.45) or A p i  
given by (1.5) which represents the spatially distributed difference in the instantaneous pressure field 
predicted by the boundary-layer and outer-region solutions. Notice again, the parabolic distribution 
in the profiles at 0.1 Hz as compared with the more complicated flow distribution which appears at 
10 Hz. 

- see figure 9). At 10 Hz, the maximum spatial variability is almost 18% of the 
macromechanical value. 

The simple model of the cupula was presented primarily to illustrate the behaviour 
of the ampullary boundary layer and we have made no attempt to optimize cupular 
parameters. Nevertheless, it is interesting to compare the magnitude of the stiffnesses 
shown in figures 4 and 5 to other values of stiffness appearing in biological materials. 
For example, the passive cortical tension in the membrane of granulocytes was 
reported by Evans & Dembo (1990) to be 0.035 dyn cm-' which coincidentally is the 
same as the value chosen for the membrane tension corresponding to displacement 
and pressure profiles shown in figures 8 and 9. It is not clear whether the cupular 
restoring force is better modelled with bending elasticity rather than membrane 
prestress. In a bending mode, a stiffness of 4.7 x lop5 dyn cm-' reproduces the same 
macromechanical response as is shown in figure 4 for a corresponding membrane 
stiffness of 0.035 dyn cm-'. A comparison of the cupular shear angle shows that 
the local micromechanics is qualitatively similar with both types of restoring-force 
mechanisms showing the characteristic high-frequency gain and phase enhancement 
seen in figure 5 (in the case of bending stiffness, this enhancement occurs slightly higher 
in the frequency spectrum). Assuming the cupular material to be incompressible (with 
Poisson's ratio equal to 1/2) a bending stiffness of 4.7 x lop5 dyn cm-' and a thickness 
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of 0.05 cm corresponds to an extensional Young’s modulus of 3.4 dyn cm-2. To put 
this in perspective, this is substantially lower than the stiffness of 275 dyn cm-2 
reported by Schmid-Schonbein et al. (1981) for the cytoplasm of neutrophils and 
nearly equal to the dynamic stiffness of respiratory tract mucus (Lutz, Lutt & 
Chakrin 1973) 

7.5. Relationship to the aferent response 
The first-order afferent response depends on many factors. One among these is the 
macromechanics of endolymph flow and pressure. Other factors which influence the 
response dynamics of the afferent nerve include the micromechanical response of 
the cupula and the deflection of individual cilia, mechanotransduction in hair cells, 
processing by hair-cell currents, the dynamics associated with the activation of vesicle 
binding and release of neurotransmitter, and post-synaptic binding and summation 
(Guyton 1986; Hudspeth 1983). A motivating factor in this paper has been the 
degree to which the mechanics has bearing on the afferent response and the extent to 
which it may account for the variation among the afferent units within the vestibular 
nerve. The variation within the afferent population was discussed earlier in relation to 
figure 4. While the source of this variation is not yet completely understood, explana- 
tions involve processing by hair-cell/afferent complexes and the non-uniform spatial 
variations in the displacement field of the cupula (Highstein et al. 1995; Honrubia et 
al. 1989; Boyle et al. 1991; Goldberg et al. 1992; Hillman 1974; McLaren & Hillman 
1979). The present biomechanical results are most consistent with electrophysiological 
results provided by Highstein et al. (1995) describing responses of individual afferents 
in terms of a combination of mechanical and post-transduction signal processing. 
They attribute less than half of the diversity observed across the population of affer- 
ents to the mechanics. Even though the cupula model employed in the present study is 
quite limited, numerical results show spatio-temporal inhomogeneity consistent with 
the hypothesis that local variations in the deformation of the cupula contribute to 
the diversity of afferent responses. 

8. Summary and conclusions 
A mathematical analysis is presented that describes the fluid-structure interaction 

which takes place within the ampulla of the vestibular canal. Using a singular 
perturbation method and a matched asymptotic analysis, the model details the two- 
dimensional axisymmetric velocity field in a boundary-layer region surrounding the 
cupula. The governing equations were linearized for small perturbations in fluid 
displacement around the prescribed motion of the endolymphatic duct wall. The new 
boundary-layer model was solved analytically and combined with previous results for 
the outer region to relate the differential pressure drop through the boundary layer 
to the pointwise deflection of the cupula. The analysis leads to a relatively simple 
expression for the transcupular pressure field in terms of the prescribed motion of 
the head, morphology of the semicircular canal duct, and motion of the cupula. This 
result provides a dynamical boundary condition acting on the surfaces of the cupula 
and represents the primary contribution of the present work. 

As an example of how to use the new mathematical result, the boundary condi- 
tion was coupled to a simple viscoelastic model of the cupula and applied to the 
semicircular canal geometry of the toadfish, Opsanus tau. The spatially averaged 
displacement field of the cupula (macromechanics) showed the same response as pre- 
vious macromechanical models of canal dynamics (Oman et al. 1987; Van Buskirk et 
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al. 1976; Van Buskirk 1987). However, the pointwise displacement of the cupula and 
the shear strain acting on the stereociliary bundles differ significantly from macrome- 
chanical models. For a cupular stiffness between 0.0035 and 0.035 dyn cm-' and a 
cupular viscosity equal to that of endolymph, the cupular-shear-angle gain, defined 
by the slope of the cupula at the wall divided by the angular velocity of the head, was 
relatively constant and equal to 9.2 x O ( O  sV1)-' over the range of frequencies from 
0.01 Hz up to about 1 Hz. Over this same range, the phase was approximately zero. 
Above 1 Hz, the cupular-shear-angle gain increased slightly while the phase showed 
a lead of as much as 30". High-frequency increases in gain and phase exist locally on 
the cupula but are absent in the spatially averaged macromechanical deflection. 

Results show that the spatio-temporal response of the cupula is sensitive to the 
multi-dimensional interaction of the cupula with the surrounding ampullary en- 
dolymph. Various regions of the cupula are coupled together via the endolymph 
in the boundary layer. This local coupling has a strong influence on the pointwise 
deflected shape of the cupula and hence is important in determining the mechani- 
cal stimulus activating sensory hair-cells. Comparison of the theoretical results of 
the model to the afferent data recorded from the vestibular nerve suggests that the 
local micromechanics may account for some of the observed high-frequency gain 
and phase enhancement but cannot alone account for the broad range of responses 
elicited among the afferent population. 

Sensitivity of the local deflection field to cupular material parameters strongly 
indicates that current models of the cupula are inadequate and probably do not 
capture the spatial distribution of cupular deflection. In future work, appropriate 
constitutive models must be determined experimentally in order to properly describe 
and model the mechanical behaviour of the cupula. A morphologically accurate 
geometrical model of the cupula and realistic boundary conditions at the cupula- 
crista interface must also be established. Direct experimental measurements of the 
cupula deflection field will also be necessary to validate any modelling efforts. This 
may be particularly relevant when attempting to address metabolically active motile 
mechanisms that may be playing a role in cupular dynamics (Riisch & Thurm 
1990). Although some evidence suggests that the role of active motility may be small 
compared to passive mechanics (Highstein et al. 1995), it cannot be ruled out as 
a possible contributor to local-domain cupular dynamics. These topics remain the 
subject of future investigations. 

The authors gratefully acknowledge Dr Mark Holmes for his valuable contributions 
during the development of the mathematical analysis. Partial support for this work 
was contributed by the National Institutes of Health, NIDCD 5P01 DC01837, and 
the National Science Foundation, BCS-8957206. 

Appendix. Momentum equation for the cupula 
The asymptotic analysis carried out here is specifically designed to lump the influ- 

ence of the entire endolymphatic fluid dynamics into a dynamic boundary condition 
acting on the leaflet surfaces of the cupula. The result provides a relationship between 
the pressure differential acting across the cupula, the acceleration of the head, and the 
velocity and acceleration of the cupula itself. This expression is coupled to the cupula 
using the momentum equation governing the displacement of the cupula. Treating the 
cupula as a simple material continuum as described in $4, the momentum equation 
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has the form 

(A 1)  
where W* is the three-dimensional deformation field of the cupula in dimensional 
units, L' is a matrix of differential operators, p i  and p ;  are the dimensional pressures 
acting on the surfaces of the cupula, and np is the outward unit normal vector to 
the surface of the cupula leaflets. Regardless of the specific constitutive behaviour 
of the cupula, the expression for the endolymph pressure provides the forcing in this 
equation. 

We treat the cupula as two linearly elastic membranes retaining a passive linearly 
viscous fluid. This assumption does not restrict the validity or application of the 
matched asymptotic expansion for the fluid dynamics and is presented here primarily 
as an example. The dimensionless transverse displacement of the cupula, w, = ww,'/U, 
is expanded in a series in terms of E such that w, = wso +EW,,  +. . .. In a similar manner 
as with the fluid, a new variable, w, is defined which represents the displacement of the 
cupula relative to the duct wall such that the boundary conditions are homogeneous. 
To leading order, the equation of motion and boundary condition governing the 
transverse displacement of the cupula, W O ,  relative to the duct wall are given by 
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L*[W*I = ( P ;  - P ; )  np, 

- V ,  - ( y V , w o ) = - - R p Q + ~ ~ A p o ,  S t  .. (A2)  
Re at2 Re 2 h/l  

and 

wolo = 0, (A 3) 
where CT is the curve which corresponds to the boundary of the cupula partition and 
y is the dimensionless stiffness of the cupula given by 

T 
p p  haoo U ' w =  

Here v p  is the kinematic viscosity of the cupular fluid, p p  and h are the density and 
thickness of the cupula, respectively, and T is the membrane tension of the cupula at 
equilibrium. The dimensionless stiffness, y ,  may in general depend on r and 4p since 
both the stiffness, T ,  and thickness, h, may vary over the cross-section. The pressure 
appearing in this equation is replaced by the asymptotically determined fluid pressure 
to obtain the numerical results presented herein. 

Note, if we consider a degenerate case when the stiffness, T ,  vanishes and the 
viscosity and density of the cupula are equal to that of the endolymph, then, in 
passing to the limit as the dimensionless length h/l tends toward zero, we retrieve the 
O(1) equation governing the fluid given by (2.12). Notice that 
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